Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Dry weather pollution sources cause coastal water quality problems that are not accounted for in existing beach advisory metrics. A 1D wave-driven advection and loss model was developed for a 30 km nearshore domain spanning the United States/Mexico border region. Bathymetric nonuniformities, such as the inlet and shoal near the Tijuana River estuary mouth, were neglected. Nearshore alongshore velocities were estimated by using wave properties at an offshore location. The 1D model was evaluated using the hourly output of a 3D regional hydrodynamic model. The 1D model had high skill in reproducing the spatially averaged alongshore velocities from the 3D model. The 1D and 3D models agreed on tracer exceedance or nonexceedance above a human illness probability threshold for 87% of model time steps. 1D model tracer was well-correlated with targeted water samples tested for DNA-based human fecal indicators. This demonstrates that a simple, computationally fast, 1D nearshore wave-driven advection model can reproduce nearshore tracer evolution from a 3D model over a range of wave conditions ignoring bathymetric nonuniformities at this site and may be applicable to other locations.more » « less
- 
            Abstract Rip currents are generated by surfzone wave breaking and are ejected offshore inducing inner-shelf flow spatial variability (eddies). However, surfzone effects on the inner-shelf flow spatial variability have not been studied in realistic models that include both shelf and surfzone processes. Here, these effects are diagnosed with two nearly identical twin realistic simulations of the San Diego Bight over summer to fall where one simulation includes surface gravity waves (WW) and the other that does not (NW). The simulations include tides, weak to moderate winds, internal waves, submesoscale processes, and have surfzone width L sz of 96(±41) m (≈ 1 m significant wave height). Flow spatial variability metrics, alongshore root mean square vorticity, divergence, and eddy cross-shore velocity, are analyzed in a L sz normalized cross-shore coordinate. At the surface, the metrics are consistently (> 70%) elevated in the WW run relative to NW out to 5 L sz offshore. At 4 L sz offshore, WW metrics are enhanced over the entire water column. In a fixed coordinate appropriate for eddy transport, the eddy cross-shore velocity squared correlation betweenWWand NW runs is < 0.5 out to 1.2 km offshore or 12 time-averaged L sz . The results indicate that the eddy tracer ( e.g. , larvae) transport and dispersion across the inner-shelf will be significantly different in the WW and NW runs. The WW model neglects specific surfzone vorticity generation mechanisms. Thus, these inner-shelf impacts are likely underestimated. In other regions with larger waves, impacts will extend farther offshore.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
